Neural Networks And Genetic Algorithms For Domain Independent Multiclass Object Detection
نویسندگان
چکیده
This paper describes a domain independent approach to multiple class rotation invariant 2D object detection problems. The approach avoids preprocessing, segmentation and specific feature extraction. Instead, raw image pixel values are used as inputs to the learning systems. Five object detection methods have been developed and tested, the basic method and four variations which are expected to improve the accuracy of the basic method. In the basic method cutouts of the objects of interest are used to train multilayer feed forward networks using back propagation. The trained network is then used as a template to sweep the full image and find the objects of interest. The variations are (1) Use of a centred weight initialization method in network training, (2) Use of a genetic algorithm to train the network, (3) Use of a genetic algorithm, with fitness based on detection rate and false alarm rate, to refine the weights found in basic approach, and (4) Use of the same genetic algorithm to refine the weights found by method 2. These methods have been tested on three detection problems of increasing difficulty: an easy database of circles and squares, a medium difficulty database of coins and a very difficult database of retinal pathologies. For detecting the objects in all classes of interest in the easy and the medium difficulty problems, a 100% detection rate with no false alarms was achieved. However the results on the retinal pathologies were unsatisfactory. The centred weight initialization algorithm improved the detection performance over the basic approach on all three databases. In addition, refinement of weights with a genetic algorithm significantly improved detection performance on the three databases. The goal of domain independent object recognition was achieved for the detection of relatively small regular objects in larger images with relatively uncluttered backgrounds. Detection performance on irregular objects in complex, highly cluttered backgrounds such as the retina pictures, however, has not been achieved to an acceptable level.
منابع مشابه
Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کاملComparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction
No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural network
Abstract— In order to provide complete security in a computer system and to prevent intrusion, intrusion detection systems (IDS) are required to detect if an attacker crosses the firewall, antivirus, and other security devices. Data and options to deal with it. In this paper, we are trying to provide a model for combining types of attacks on public data using combined methods of genetic algorit...
متن کاملکاهش رنگ تصاویر با شبکههای عصبی خودسامانده چندمرحلهای و ویژگیهای افزونه
Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...
متن کاملYarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms
Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Computational Intelligence and Applications
دوره 4 شماره
صفحات -
تاریخ انتشار 2004